Friday, 6 December 2013

What Are We Tracking: A Uniļ¬ed Approach of Tracking and Recognition MECS1320


        Tracking is essentially a matching problem. While traditional tracking methods mostly focus on low-level image correspondences between frames, we argue that high-level semantic correspondences are indispensable to make tracking more reliable. Based on that, a unified approach of low-level object tracking and high-level recognition is proposed for single object tracking, in which the target category is actively recognized during tracking. High-level offline models corresponding to the recognized category are then adaptively selected and combined with low-level online tracking models so as to achieve better tracking performance. Extensive experimental results show that our approach outperforms state-of-the-art online models in many challenging tracking scenarios such as drastic view change, scale change, background clutter, and morphable objects.

Underwater Image Enhancement by Wavelength Compensation and Dehazing MECS1329


                    Light scattering and color change are two major sources of distortion for underwater photography. Light scattering is caused by light incident on objects reflected and deflected multiple times by particles present in the water before reaching the camera. This in turn lowers the visibility and contrast of the image captured. Color change corresponds to the varying degrees of attenuation encountered by light traveling in the water with different wavelengths, rendering ambient underwater environments dominated by a bluish tone. No existing underwater processing techniques can handle light scattering and color change distortions suffered by underwater images, and the possible presence of artificial lighting simultaneously. This paper proposes a novel systematic approach to enhance underwater images by a dehazing algorithm, to compensate the attenuation discrepancy along the propagation path, and to take the influence of the possible presenceof an artifical light source into consideration. Once the depth map, i.e., distances between the objects and the camera, is estimated, the foreground and background within a scene are segmented. The light intensities of foreground and background are compared to determine whether an artificial light source is employed duringthe image capturing process. After compensating the effect of artifical light, the haze phenomenon and discrepancy in wavelength attenuation along the underwater propagation path to camera are corrected. Next, the water depth in the image scene is estimated according to the residual energy ratios of different color channels existing in the background light. Based on the amount of attenuation corresponding to each light wavelength, color change compensation is conducted to restore color balance. The performance of the proposed algorithm for wavelength compensation and image dehazing (WCID) is evaluated both objectively and subjectively by utilizing ground-truth color patches and video downloaded from the Youtube website. Both results demonstrate that images with significantly enhanced visibility and superior color fidelity are obtained by the WCID proposed.

Adaptive Fingerprint Image Enhancement with Emphasis on Pre-processing of Data MECS1303


       This article proposes several improvements to an adaptive fingerprint enhancement method that is based on contextual filtering. The term adaptive implies that parameters of the method are automatically adjusted based on the input fingerprint image. Five processing blocks comprise the adaptive fingerprint enhancement method, where four of these blocks are updated in our proposed system. Hence, the proposed overall system is novel. The four updated processing blocks are; preprocessing, global analysis, local analysis and matched filtering. In the pre-processing and local analysis blocks, a nonlinear dynamic range adjustment method is used. In the global analysis and matched filtering blocks, different forms of order statistical filters are applied. These processing blocks yield an improved and new adaptive fingerprint image processing method. The performance of the updated processing blocks is presented in the evaluation part of this paper. The algorithm is evaluated towards the NIST developed NBIS software for fingerprint recognition on FVC databases.