Thursday, 14 November 2013

Crowd sourcing Predictors of Behavioral Outcomes.

Abstract:

Generating models from large data sets—and determining which subsets of data to mine—is becoming increasingly automated. However, choosing what data to collect in the firstplace requires human intuition or experience, usually supplied by a domain expert. This paper describes a new approach to machine science which demonstrates for the first time that nondomain experts can collectively formulate features and provide values for those features such that they are predictive of some behavioral outcome of interest. This was accomplished by building a Webplatform in which human groups interact to both respond to questions likely to help predict a behavioral outcome and pose new questions to their peers. This results in a dynamically growing online survey, but the result of this cooperative behavior also leads to models that can predict the user’s outcomes based on their responses to the user-generated survey questions. Here, we describe two Web-based experiments that instantiate this approach: The first site led to models that can predict users’ monthly electric energy consumption, and the other led to models that can predict users’ body mass index. As exponential increases in content areoften observed in successful online collaborative communities, the proposed methodology may, in the future, lead to similar exponential rises in discovery and insight into the causal factors of behavioral outcomes.

No comments:

Post a Comment