Abstract:
Target Tracking is an important problem in sensor networks, where it dictates how accurate a targets position can be measured. In response to the recent surge of interest in mobile sensor applications, this paper studies the target tracking problem in a mobile sensor network (MSN), where it is believed that mobility can be exploited to improve the tracking resolution. This problem becomes particularly challenging given the mobility of both sensors and targets, in which the trajectories of sensors and targets need to be captured. We derive the inherent relationship between the tracking resolution and a set of crucial system parameters including sensor density, sensing range, sensor and target mobility. We investigate the correlations and sensitivity from a set of system parameters and we derive the minimum number of mobile sensors that are required to maintain the resolution for target tracking in an MSN. The simulation results demonstrate that the tracking performance can be improved by an order of magnitude with the same number of sensors when compared with that of the static sensor environment.
No comments:
Post a Comment